Propagation of ULF waves through the ionosphere: Inductive effect for oblique magnetic fields

نویسنده

  • M. D. Sciffer
چکیده

Solutions for ultra-low frequency (ULF) wave fields in the frequency range 1–100 mHz that interact with the Earth’s ionosphere in the presence of oblique background magnetic fields are described. Analytic expressions for the electric and magnetic wave fields in the magnetosphere, ionosphere and atmosphere are derived within the context of an inductive ionosphere. The inductive shielding effect (ISE) arises from the generation of an “inductive” rotational current by the induced part of the divergent electric field in the ionosphere which reduces the wave amplitude detected on the ground. The inductive response of the ionosphere is described by Faraday’s law and the ISE depends on the horizontal scale size of the ULF disturbance, its frequency and the ionosphere conductivities. The ISE for ULF waves in a vertical background magnetic field is limited in application to high latitudes. In this paper we examine the ISE within the context of oblique background magnetic fields, extending studies of an inductive ionosphere and the associated shielding of ULF waves to lower latitudes. It is found that the dip angle of the background magnetic field has a significant effect on signals detected at the ground. For incident shear Alfvén mode waves and oblique background magnetic fields, the horizontal component of the field-aligned current contributes to the signal detected at the ground. At low latitudes, the ISE is larger at smaller conductivity values compared with high latitudes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A numerical model to investigate the polarisation azimuth of ULF waves through an ionosphere with oblique magnetic fields

A one dimensional, computational model for the propagation of ultra low frequency (ULF; 1–100 mHz) wave fields from the Earth’s magnetosphere through the ionosphere, atmosphere and into the ground is presented. The model is formulated to include solutions for high latitudes where the Earth’s magnetic field, (B0), is near vertical and for oblique magnetic fields applicable at lower latitudes. Th...

متن کامل

Numerical study of the generation and propagation of ultralow-frequency waves by artificial ionospheric F region modulation at different latitudes

Powerful high-frequency (HF) radio waves can be used to efficiently modify the upper-ionospheric plasmas of the F region. The pressure gradient induced by modulated electron heating at ultralow-frequency (ULF) drives a local oscillating diamagnetic ring current source perpendicular to the ambient magnetic field, which can act as an antenna radiating ULF waves. In this paper, utilizing the HF he...

متن کامل

Ultra-low-frequency electrodynamics of the magnetosphere-ionosphere interaction

[1] The results presented in this paper provide an explanation for electromagnetic oscillations with frequencies much less than the fundamental eigenfrequency of the magnetosphere measured in the regions where the ionospheric conductivity is low and a small-amplitude, large-scale electric field in the ionosphere exists. This study is based on numerical simulations of a reduced two-fluid MHD mod...

متن کامل

Resonant Cavities and Waveguides in the Ionosphere and Atmosphere

The strong inhomogeneities in plasma parameters in the ionosphere and adjacent regions can trap waves in the upper end of the ULF range (Pc1/Pi1). The topside ionosphere is characterized by a rapidly increasing Alfvén speed with a scale height the order of 1000 km. Shear mode Alfvén waves in this region can be partially trapped at frequencies in the 0.1-1.0 Hz range. The same structure can trap...

متن کامل

Magneto‐ionic polarization and GPS signal propagation through the ionosphere

[1] Recent progress in high‐precision GPS measurements research and applications leads to the study of higher‐order ionosphere effects on GPS signal propagation. This paper focuses on second‐order ionospheric effects, which are influenced by the presence of the Earth’s magnetic field. Due to the presence of Earth’s magnetic field, GPS signals may propagate through the ionosphere in two distinct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004